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Abstract. A theoretical analysis is given for a channel-drop tunnelling structure composed of
two horizontal channels and a resonator system with multiple vertical multi-mode cavities in a
two- or three-dimensional photonic crystal. Criteria for a complete transfer are derived for the
application of wavelength division multiplexing. Compared to the resonator system with multiple
(horizontal) single-mode cavities, the present resonator system improves the transport properties
due to its high-order characteristics of the tunnelling process.

1. Introduction

A photonic crystal is a periodic dielectric structure which is used to control and manipulate
the propagation of light [1–4]. It may offer a possibility of eliminating electromagnetic wave
propagation within a frequency band, i.e. a photonic bandgap. The discovery of photonic band-
gap materials and their use in controlling light propagation is a new and exciting development.
It has vast implications for material scientists, electrical engineers and physicists. It is well
known that one can create a waveguide (i.e. channel) in an otherwise perfect photonic crystal
by making a line defect (e.g. removing a row of inclusions) [2]. Recently, channel-dropping
tunnelling processes have attracted particular interest due to their important applications in,
e.g., wavelength division multiplexing (WDM) in optical communications [5–8]. A channel-
dropping tunnelling process occurs between two channels of propagating states, side coupled
through a resonator system which supports localized states. Optimal tunnelling is reached
when a propagating state at a fixed (selected) frequency is completely transferred from one
channel to the other, leaving all other states (at other frequencies) unaffected [9]. In contrast to
ordinary waveguides and cavities, photonic crystal waveguides and microcavities do not suffer
from intrinsic radiation losses [1, 10–13] and are somewhat insensitive to fabrication-related
disorders [14]. It is therefore of great practical interest to explore the possibilities of optimal
tunnelling in photonic crystals. In [9, 15], it has been shown that optimal tunnelling between
channels through two horizontal single-mode cavities in a two-dimensional photonic crystal can
occur by creating resonant states of different symmetry and forcing an accidental degeneracy
of the renormalized resonant frequency. Theoretical analysis and computer simulation have
also been given there for an optimal tunnelling of the structure with two horizontal single-mode
cavities.
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In this paper, we study two channels of propagating states, side coupled through a resonator
system consisting of multiple vertical multi-mode cavities (such as hexapole cavities) in a
photonic crystal. We introduce a new formalism to obtain the transport properties of the
channel-dropping tunnelling structure and derive criteria for the optimal tunnelling. It is shown
that the present resonator system of the multiple vertical multi-mode cavities can improve the
transport properties (compared with that of multiple horizontal single-mode cavities) and reach
desirable higher-order channel-dropping tunnelling characteristics [6].

2. Problem formulation and the analysis

Figure 1(a) gives a schematic diagram of the higher-order channel-dropping tunnelling system
considered in this paper. The physical configuration for such a structure in a photonic crystal
is shown in figure 1(b). The system is composed of two channel states, labelled |k〉 (in the
upper channel) and |k̄〉 (in the lower channel), coupled through a resonator system. The
resonator system consists of multiple vertical coupled multi-mode cavities which are formed
by increasing the radii of the rods (note that a multi-mode state can be excited only for a
cavity rod with radius larger than the inclusion rods). The corresponding multi-mode states
are denoted by |Cn〉. The transport properties of the system are determined by the interaction
between these states.

In order to eliminate the reflected and transmitted signals, one has to use a structure with
two mirror symmetries with respect to planes perpendicular and parallel to the two channels [7].
The structure can be characterized by even and odd states with respect to the perpendicular
mirror plane. The corresponding propagating states are labelled |ke〉, |k̄e〉, |ko〉, |k̄o〉, and
the corresponding resonant states are labelled |Cn

e 〉 and |Cn
o 〉 (the even and odd states have

subscripts e and o, respectively). We describe the interaction between these states by an
effective Hamiltonian H which can be written as the sum of the even part and odd part, i.e.
H = H e + H o, where

H e =
∑
k>0

ω(ke)|ke〉〈ke| +
∑
k̄>0

ω(k̄e)|k̄e〉〈k̄e| +
N∑

n=1

ω(n)
e |Cn

e 〉〈Cn
e |

+
N−1∑
n=1

V (n,n+1)
e [|Cn

e 〉〈Cn+1
e | + |Cn+1

e 〉〈Cn
e |] +

√
2

L

∑
k>0

Vke [|ke〉〈C1
e | + |C1

e 〉〈ke|]

+

√
2

L

∑
k̄>0

Vk̄e
[|k̄e〉〈CN

e | + |CN
e 〉〈k̄e|] (1)

H o =
∑
k>0

ω(ko)|ko〉〈ko| +
∑
k̄>0

ω(k̄o)|k̄o〉〈k̄o| +
N∑

n=1

ω(n)
o |Cn

o 〉〈Cn
o |

−
N−1∑
n=1

V (n,n+1)
o [|Cn

o 〉〈Cn+1
o | + |Cn+1

o 〉〈Cn
o |] + i

√
2

L

∑
k>0

Vko [|ko〉〈C1
o | − |C1

o〉〈ko|]

+i

√
2

L

∑
k̄>0

Vk̄o
[|k̄o〉〈CN

o | − |CN
o 〉〈k̄o|] (2)

and where the frequencies ω(ke), ω(k̄e), ω(ko), ω(k̄o) give the dispersion relations of the even
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Figure 1. (a) A schematic diagram and (b) the configuration for a channel-drop tunnelling structure
with a resonator system consisting of multiple vertical multi-mode cavities in a photonic crystal.

and odd states in the two channels, and

|ke〉 = 1√
2
(|k〉 + |−k〉) |ko〉 = 1√

2i
(|k〉 − |−k〉)

|k̄e〉 = 1√
2
(|k̄〉 + |−k̄〉) |k̄o〉 = 1√

2i
(|k̄〉 − |−k̄〉).

(3)

The factor 1√
L

in equations (1), (2) arises from a box normalization of the length L.
The coefficients Vke , Vk̄e

, Vko, Vk̄o
are the coupling constants between the cavities and the

propagating states, and the coefficient V
(n,n+1)

e (or V
(n,n+1)

o ) is the direct coupling constant
between the localized states |Cn

e 〉 and |Cn+1
e 〉 (or |Cn

o 〉 and |Cn+1
o 〉). Due to the symmetry of the
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structure, the coupling coefficients satisfy the following relations:

ω(ke) = ω(k̄e) = ω(ko) = ω(k̄o) ≡ ω(kin)

ω(1)
e = ω(2)

e = · · · = ω(N)
e ≡ ωe

ω(1)
o = ω(2)

o = · · · = ω(N)
o ≡ ωo

V (1,2)
e = V (N−1,N)

e V (2,3)
e = V (N−2,N−1)

e . . .

V (1,2)
o = V (N−1,N)

o V (2,3)
o = V (N−2,N−1)

o . . .

Vke = Vk̄e
≡ Vke

Vko = Vk̄o
≡ Vko

(4)

where kin is the wavevector for the incident wave.
Let us introduce a time-dependent state vector |�(t)〉 to describe the whole structure

(including the channels and cavities). The state vector can be decomposed into the even and
odd parts, i.e.

|�(t)〉 = |�e(t)〉 + |�o(t)〉. (5)

Both |�e(t)〉 and |�o(t)〉 satisfy the following Schrödinger-type equation:

i
d

dt
|�e(t)〉 = H e|�e(t)〉

i
d

dt
|�o(t)〉 = H o|�o(t)〉.

(6)

Note that quantum mechanic theories such as the Schrödinger equation and Hamiltonian are
commonly used in the literature of photonic crystals for theoretical analysis and the theoretical
results have been shown to be consistent with the numerical simulation results obtained by
solving the classical Maxwell’s equations (see, e.g., [7, 9, 15, 16]). In this paper we use the
Schrödinger equation (instead of Maxwell’s equations) for the theoretical analysis.

We proceed by expanding |�e(t)〉 and |�o(t)〉 in terms of |Cn
e 〉, |Cn

o 〉, |C̄n
e 〉, |C̄n

o 〉 and |ke〉,
|ko〉, |k̄e〉, |k̄o〉 as follows:

|�(t)〉 =
N∑

n=1

C(n)
e (t)|Cn

e 〉 +
N∑

n=1

C(n)
o (t)|Cn

o 〉 +
∑
k>0

Ce(k, t)|ke〉 +
∑
k>0

Co(k, t)|ko〉

+
∑
k̄>0

Ce(k̄, t)|k̄e〉 +
∑
k̄>0

Co(k̄, t)|k̄o〉

where the time-dependent amplitudes C
(n)
e (t), C(n)

o (t), Ce(k, t), Co(k, t), Ce(k̄, t) and Co(k̄, t)

are given by

C(n)
e (t) = 〈Cn

e |�e(t)〉 C(n)
o (t) = 〈Cn

o |�o(t)〉
Ce(k, t) = 〈ke|�e(t)〉 Co(k, t) = 〈ko|�o(t)〉
Ce(k̄, t) = 〈k̄e|�e(t)〉 Co(k̄, t) = 〈k̄o|�o(t)〉.

(7)

First we study the transport properties for the even part. The time-dependent amplitudes
C

(n)
e (t), Ce(k, t) and Ce(k̄, t) satisfy the following Schrödinger equations:

i
dC

(1)
e (t)

dt
= ωeC

(1)
e (t) + V (1,2)

e C(2)
e (t) +

√
2

L

∑
k>0

VkeCe(k, t)

i
dC

(n)
e (t)

dt
= ωeC

(n)
e (t) + V (n,n+1)

e C(n+1)
e (t) + V (n,n−1)

e C(n−1)
e (t) n = 2, 3, . . . , N − 1

i
dC

(N)
e (t)

dt
= ωeC

(N)
e (t) + V (N−1,N)

e C(N−1)
e (t) +

√
2

L

∑
k̄>0

VkeCe(k̄, t)

(8)
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i
dCe(k, t)

dt
= ω(k)Ce(k, t) +

√
2

L
VkeC

(1)
e (t)

i
dCe(k̄, t)

dt
= ω(k)Ce(k̄, t) +

√
2

L
VkeC

(N)
e (t).

(9)

Integrating equation (9) with the initial condition |�(t = 0)〉 = |kin〉, one obtains the
following time-dependent amplitudes, with Ce(k, t) and Ce(k̄, t) in terms of C

(1)
e (t) and

C
(N)
e (t):

Ce(k, t) =
[

e−iω(k)t +

√
2

L

∫ ∞

0
e−iω(k)(t−t ′)VkeC

(1)
e (t ′) dt ′

]
δ(k − kin)

Ce(k̄, t) =
[√

2

L

∫ ∞

0
e−iω(k)(t−t ′)VkeC

(N)
e (t ′) dt ′

]
δ(k − kin).

(10)

Substituting the above equations into equation (8), one obtains

i
dC

(1)
e (t)

dt
= ωeC

(1)
e (t) + V (1,2)

e C(2)
e (t) +

√
2

L
Vke e

−iω(kin)t +
∫ ∞

0
Ge(t − t ′)C(1)

e (t ′) dt ′

i
dC

(n)
e (t)

dt
= ωeC

(2)
e (t) + V (n,n+1)

e C(n+1)
e (t) + V (n,n−1)

e C(n−1)
e (t) n = 2, 3, . . . , N − 1

i
dC

(N)
e (t)

dt
= ωeC

(N)
e (t) + V (N−1,N)

e C(N−1)
e (t) +

∫ ∞

0
Ge(t − t ′)C(N)

e (t ′) dt ′

(11)

where the delayed Green function Ge(t − t ′) is given by

Ge(t − t ′) = lim
ε→0+




0 if t < t ′

2

L

∫ ∞

0
V 2

ke
e−i[ω(k)−iε](t−t ′)δ(k − kin) dk if t > t ′

(12)

and its implicit form strongly depends on the dispersion relations. For example, in the photonic
crystal waveguides, the Green function Ge(t − t ′) has the form of delta-function δ(t − t ′) as in
a free space, rather than Ge(t − t ′) ∼ (t − t ′)−1/2 at the edge of the isotropic PBG. Therefore,
the variable t ′ in C

(1)
e (t ′) and C

(N)
e (t ′) in equation (11) can be replaced by t and C

(1)
e (t), C

(N)
e (t)

can then be taken out of the integral [17]. The integral of Ge(t − t ′) can be calculated easily
as for the free space case (see, e.g., [18]) and equations (11) can be written in the following
form:

i
dC

(1)
e (t)

dt
= ωeC

(1)
e (t) + V (1,2)

e C(2)
e (t) +

√
2

L
Vke e

−iω(kin)t − iV 2
ke
g−1

0 C(1)
e (t)

i
dC

(n)
e (t)

dt
= ωeC

(n)
e (t) + V (n,n+1)

e C(n+1)
e (t) + V (n,n−1)

e C(n−1)
e (t) n = 2, 3, . . . , N − 1

i
dC

(N)
e (t)

dt
= ωeC

(N)
e (t) + V (N−1,N)

e C(N−1)
e (t) − iV 2

ke
g−1

0 C(N)
e (t)

(13)

where g0 is the density of states of the propagating mode at frequency ωe, i.e.

g−1
0 = 2π

L

∑
kin

δ[ω(kin) − ωe].

Note that the densities of states are equal to the inverse of the group velocity at that frequency
ωe (see, e.g., [9]).
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Using equation (13) and the fact that C
(n)
e (t) = C

(n)
e e−iω(kin)t (this is because the

system is excited by a monochromatic wave with time-dependency e−iω(kin)t ), it follows from
equation (11) that

ω(kin)C(1)
e e−iω(kin)t = ωeC

(1)
e e−iω(kin)t + V (1,2)

e C(2)
e e−iω(kin)t

+

√
2

L
Vke e

−iω(kin)t − i
|Vke |2
g0

C(1)
e e−iω(kin)t n = 2, 3, . . . , N − 1

ω(kin)C(n)
e e−iω(kin)t = ωeC

(n)
e e−iω(kin)t + V (n,n+1)

e e−iω(kin)t + V (n,n−1)
e C(n−1)

e e−iω(kin)t

ω(kin)C(N)
e e−iω(kin)t = ωeC

(N)
e e−iω(kin)t + V (N−1,N)

e C(N−1)
e e−iω(kin)t − i

|Vke |2
g0

C(N)
e e−iω(kin)t .

(14)

From the above system of linear equations, one can obtain the following explicit expressions
for C

(1)
e and C

(N)
e :

C(1)
e =

√
2
L
Vke

�ωe + iγe − |V (1,2)
e |2

�ωe− |V (2,3)
e |2

�ωe−···− |V (N−1,N)
e |2
�ωe+iγe

C(N)
e =

C
(1)
e

N−1∏
n=1

V
(n,n+1)

e

[�ωe + iγe]

[
�ωe − |V (N−1,N)

e |2
�ωe + iγe

]
× · · · ×


�ωe− |V (2,3)

e |2
�ωe− |V (3,4)

e |2
�ωe−···− |V (N−1,N)

e |2
�ωe+iγe




(15)

where

�ωe = ω(kin) − ωe γe = V 2
ke

g0
. (16)

Similarly, one can obtain the following time-dependent amplitudes Co(k, t) and Co(k̄, t)

for the odd part:

Co(k, t) =
[

e−iω(k)t + i

√
2

L

∫ t

0
e−iω(k)(t−t ′)VkoC

(1)
o (t ′) dt ′

]
δ(k − kin)

Co(k̄, t) =
[

i

√
2

L

∫ t

0
e−iω(k)(t−t ′)VkoC

(N)
o (t ′) dt ′

]
δ(k − kin)

(17)

where

C(1)
o =

−i
√

2
L
Vko

�ωo + iγo − |V (1,2)
o |2

�ωo− |V (2,3)
o |2

�ωo−···− |V (N−1,N)
o |2
�ωo+iγo

C(N)
o =

(−1)N−1C
(1)
o

N−1∏
n=1

V
(n,n+1)

o

[�ωo + iγo]

[
�ωo − |V (N−1,N)

o |2
�ωo + iγo

]
× · · · ×


�ωo− |V (2,3)

o |2
�ωo− |V (3,4)

o |2
�ωo−···− |V (N−1,N)

o |2
�ωo+iγo




(18)
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with

γo = V 2
ko

g0
. (19)

Now we calculate the transmission, reflection and transfer amplitudes by evaluating the
amplitudes of the state vector �(t) at x, x̄ = ±∞, which has the following asymptotic
behaviour. The transmitted amplitude in the upper channel is given by

〈x = +∞|�(t)〉 =
∑
k′>0

〈x = +∞|k′〉〈k′|�(t)〉

= 1
2

∑
k′>0

[〈x = +∞|k′
e〉〈k′

e|�(t)〉 − i〈x = +∞|k′
e〉〈k′

o|�(t)〉]

+ 1
2

∑
k′>0

[〈x = +∞|k′
o〉〈k′

o|�(t)〉 + i〈x = +∞|k′
o〉〈k′

e|�(t)〉]

= 1
2

[ ∑
k′>0

〈x = +∞|k′
e〉 + i

∑
k′>0

〈x = +∞|k′
o〉

]
Ce(k, t)〈k′

e|kin
e 〉

− i

2

[ ∑
k′>0

〈x = +∞|k′
e〉 + i

∑
k′>0

〈x = +∞|k′
o〉

]
Co(k, t)〈k′

o|kin
o 〉. (20)

Since

〈k′
e|kin

e 〉 = 〈k′
o|kin

o 〉 = δ(k′ − kin)

Ce(k, t) = e−iω(kin)t +
∫ t

0

√
L

2

Ge(t − t ′)
Vke

C(1)
e (t ′) dt ′

Co(k, t) = e−iω(kin)t +
∫ t

0

√
L

2

Go(t − t ′)
Vko

C(1)
o (t ′) dt ′

〈x|k′
e〉 = 1√

L
cos(k′x) 〈x|k′

o〉 = 1√
L

sin(k′x)

where the Green function Go(t − t ′) for the odd part is given by

Go(t − t ′) = lim
ε→0+




0 if t < t ′

2

L

∫ ∞

0
V 2

ko
e−i[ω(k)−iε](t−t ′)δ(k − kin) dk if t > t ′

it follows from equation (20) that (cf (15) and (17))

〈x = +∞|�(t)〉 = lim
x→+∞

L

2π

{
1

2
√

L

∫ ∞

0
eik′xδ(k′ − kin)

×
[

e−iω(k′)t +
∫ t

0

√
L

2

Ge(t − t ′)
Vke

C(1)
e (t ′) dt ′

]
dk′ − i

2
√

L

∫ ∞

0
eik′xδ(k′ − kin)

×
[

e−iω(k′)t + i
∫ t

0

√
L

2

Go(t − t ′)
Vko

C(1)
o (t ′) dt ′

]
dk′

}

= 1√
L

e−iω(kin)t+ikinx

[
1 −

√
L

2

iVkeC
(1)
e

g0
+

√
L

2

VkoC
(1)
o

g0

]

= e−iω(kin)t+ikinx

√
L

[
1 −

√
L

2

iγeC
(1)
e

Vke

+

√
L

2

γoC
(1)
o

Vko

]
. (21)
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Other scatting amplitudes can be obtained in a similar fashion. The reflected amplitude
in the upper channel is given by

〈x = −∞|�(t)〉 =
∑
k′>0

〈x = +∞| − k′〉〈−k′|�(t)〉

= e−iω(kin)t−ikinx

√
L

[
−

√
L

2

iγeC
(1)
e

Vke

−
√

L

2

γoC
(1)
o

Vko

]
. (22)

The forward transfer amplitude in the lower channel is given by

〈x̄ = +∞|�(t)〉 =
∑
k̄′>0

〈x = +∞|k̄′〉〈k̄′|�(t)〉

= e−iω(k̄in)t+ik̄in x̄

√
L

[
−

√
L

2

iγeC
(N)
e

Vke

+

√
L

2

γoC
(N)
o

Vko

]
(23)

where |k̄in| = |kin|. The backward transfer amplitude in the lower channel is given by

〈x̄ = −∞|�(t)〉 =
∑
k̄′>0

〈x = +∞| − k̄′〉〈−k̄′|�(t)〉

= e−iω(k̄in)t−ik̄in x̄

√
L

[
−

√
L

2

iγeC
(N)
e

Vke

−
√

L

2

γoC
(N)
o

Vko

]
. (24)

3. Transport properties of the higher-order channel-dropping tunnelling structure

One can obtain various filter functions through the appropriate selection of the direct coupling
constant between the localized states |Cn

e 〉 (or |Cn
o 〉). In applications such as WDM in optical

communications, such a maximum flat line shape is of great interest, due to its desired ‘flat-top’
and ‘sharp-sidewall’ characteristics [19]. Therefore, we focus on achieving the maximum flat
filter functions. To eliminate the reflection in the upper channel, we choose�ωe = �ωo ≡ �ω,
γe = γo ≡ γ , V

(n,n+1)
e = V

(n,n+1)
o ≡ V (n,n+1), i.e.,

ωe = ωo Vke = Vko V (n,n+1)
e = V (n,n+1)

o . (25)

Then one has

|〈x = −∞|�(t)〉|2 = 0 for all ω(kin). (26)

Note that equation (25) is due to a so-called accidental degeneracy while equation (4) is due to
the symmetry of the structure. By making use of condition (25), one can obtain the following
spectra of the transmitted signal (for an incident signal of unit amplitude) in the upper channel:

|〈x = +∞|�(t)〉|2 = 1 − 1

PN(|�ω|2) (27)

and the following spectra of the forward and backward transferred signals in the lower channel:

T+(ω) ≡ |〈x̄ = +∞|�(t)〉|2 = 0

T−(ω) ≡ |〈x̄ = −∞|�(t)〉|2 = 1

PN(|�ω|2)
when N is odd (28)

T+(ω) = 1

PN(|�ω|2)
T−(ω) = 0

when N is even (29)
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where PN(|�ω|2) is given by

PN(|�ω|2) = |�ω + iγ |2

4|γ |2
N−1∏
n=1

|V (n,n+1)|2

∣∣∣∣�ω − |V (N−1,N)|2
�ω + iγ

∣∣∣∣
2

× · · ·

×

∣∣∣∣∣∣∣∣∣
�ω − |V (2,3)|2

�ω − |V (3,4)|2

�ω−···− |V (N−1,N)|2
�ω+iγ

∣∣∣∣∣∣∣∣∣

2 ∣∣∣∣∣∣∣∣∣
�ω + iγ − |V (1,2)|2

�ω − |V (2,3)|2

�ω−···− |V (N−1,N)|2
�ω+iγ

∣∣∣∣∣∣∣∣∣

2

.

(30)

From equations (28) and (29), one sees that the transferred signal in the lower channel is
backward when the number of the cavities is odd and is forward when the number of the
cavities is even.

For a maximally flat response, the coefficients of all orders of |�ω|2, except for the highest,
must vanish [19]. This implies that for a resonator system consisting of N vertical multi-mode
cavities, the inverse of the transferring coefficient in the lower channel is given by

PN(|�ω|2) = A0 + AN |�ω|2N (31)

where A0, AN are constants related to γ and V (n,n+1). To illustrate how the maximally flat
response is achieved, we give a detailed analysis for a resonator system consisting of three
vertical multi-mode cavities. By making use of the symmetry condition V (1,2) = V (2,3) ≡ V ,
the inverse of the transferring coefficient can be written in a polynomial form (cf equations (27),
(28) and (30)):

PN(|�ω|2) = 4 +
|γ |4 − 4|γ |2|V |2 + 4|V |4

|γ |2|V |4 |�ω|2 + 2
|γ |2 − 2|V |2

|γ |2|V |4 |�ω|4 +
1

|γ |2|V |4 |�ω|6.
(32)

A maximally flat response is achieved when |γ |2 = 2|V |2. Under this condition, the spectrum
of the transferred signal in the lower channel is given by (cf equation (28))

T−(ω) = 4γ 6

|�ω|6 + 4γ 6
. (33)

Other cases can be considered in a similar fashion, and the results are summarized in table 1
for resonator systems consisting of 2–6 vertical multi-mode cavities.

In [7], the filter response of a resonator structure with two horizontal single-mode cavities
was studied by an analytical method as well as a numerical finite-difference time-domain
(FDTD) method. Excellent agreement for the spectra of the transmitted signal and transferred
signal was obtained between the FDTD simulation and the analytical method when the coupling
coefficients are chosen appropriately. In [15], a structure with a multi-mode single cavity was
simulated by a numerical FDTD method. Using the same parameters (ω0 = 0.341 56 (2πc/a)

and γ = 0.3162 ×10−4 (2πc/a), where a is the period of the lattice), we calculate the spectra
of the transmitted signal in the upper channel and transferred signal in the lower channel with
the analytical formulae presented in this paper for a channel-drop tunnelling structure with
multiple vertical multi-mode cavities. Figures 2(a) and (b) show the band characteristics of (a)
the transferring coefficient and (b) the transmission coefficient, respectively, for a resonator
structure with three vertical multi-mode cavities (solid curve), two vertical multi-mode cavities
(dash–dotted curve) and a single multi-mode cavity (dashed curve). From figure 2 one sees
clearly that the resonator structure with more vertical multi-mode cavities gives better transport
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Table 1. Conditions for a maximally flat response of a resonant system consisting of multiple
vertical multi-mode cavities. (N is the number of cavities.)

N Conditions

2 |γ |2 = |V |2
3 |V (1,2)|2 = |V (2,3)|2 = 0.5|γ |2
4 |V (1,2)|2 = |V (3,4)|2 = 0.025|γ |2, |V (2,3)|2 = 0.01|γ |2
5 |V (1,2)|2 = |V (4,5)|2 = 0.023 875|γ |2, |V (2,3)|2 = |V (3,4)|2 = 0.007 375|γ |2
6 |V (1,2)|2 = |V (5,6)|2 = 0.022 875|γ |2, |V (2,3)|2 = |V (4,5)|2 = 0.006 125|γ |2, |V (3,4)|2 = 0.004 475|γ |2

Figure 2. The band characteristics for a resonator system consisting of between one and three
vertical multi-mode cavities. (a) The transferring coefficient in the lower channel. (b) The
transmission coefficient in the upper channel.

properties, namely, a more narrow pass-band (or stop-band) and a flatter top, compared with
the resonator structure with a single multi-mode cavity.

The quality factor (i.e., Q factor, which is defined as a ratio of the central frequency and
the half-width of the pass-band) of a resonator is a measure of the frequency selectivity of
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the resonator. For the case of a resonator system with two horizontal single-mode cavities,
the quality factor is about 1000 [7]. The present resonator system with multiple vertical
multi-mode cavities gives a quality factor exceeding 5000.

4. Conclusion

In this paper we have given a theoretical analysis for a higher-order channel-drop tunnelling
structure with a resonator system which consists of multiple vertical multi-mode cavities in
photonic crystals. Criteria for a complete transfer have been derived for the application of
WDM. Compared to a resonator system with two single-mode cavities or a single multi-mode
cavity, the present resonator system (with multiple vertical multi-mode cavities) improves the
transport properties and provides a narrower pass-band, a flatter top and a larger Q factor. The
analysis and results hold for both two- and three-dimensional cases.
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